PAITOV, A.G.; ZEICM[KO, A.P.; AWDESMA, A.T. (Leningrad)
.
Erythrocytic inclusions in some virus diseases of the nervous
system. Klin. med. 41 no.9937-" S'63 (MIRA 17 23)
1. Kafedra nervnykh bolezney Voyenno-meditsinskoy ordena Lenina
akademil imeni Kirovap Leningrad.
L 46775~~ EWT DD
KC -CN R , -A-P"6 -6j fg-: ff - 965-CE Co -:--U`R7Ol77/6 0001009-0 3[6'6Y67
AUVROR; -Pan9v. A.- ,...-(Colonel; Medical corps; Professor); Tyagin, N. V. (Lieutenant
Y
colonel; Medi af -mTs; Candidate of medical sciences)
ORG: none
TITLE: Symptomatology, classification, and expertise of UHF aftereffects on the
human organism
SOURCE: Voyenno-meditsinskiy zhurnal, no. 9, 1966, 13-16
~TOPIC TAGS: microwave radiation effect, neurophysiology, human physiology
ABSTRACT: There is conclusive factual evidence of the definite biological effects
of URF fields, which may either produce organic disorders, or serve therapeutic
ends. Neurological and visceral dysfunctions observed in persons working near UHF
generators may be grouped into syndromes: 1) The asthenic syndrome; onset charac-
terized by fatigue and lowered emotional tonus, which may or may not be accompanied
by autonomic disturbances (autonomic lability, acrocyanosis, sweating, heightened
pilomotor reflexes, dermogrophism, and pulse and BP lability during orthostatic
tests). The asthenic syndrome does not include fainting. Changes are reversible
and often respond to dispensary treatment. 2) The autonomic-vascular dystonia
syndrome centering an vascular lability (fluctuating pulse and BP, alternating
brady- and tachycardia, alternat4ng arterial hypotonus amd hypertension, EKG changes,
Card 1/2 ux: 612.ol4.426+616-ool.2
t : , -- V
A
F h I MIV A. G#
in t*,%-:i tu_wTaLtment of rya.,~,.,,- -a'
Dinc(mi7ot-ld ncvocaine blcclx-,t3
Zhur.mvr. i Psikil. no.7 ::77-81 166e
C, I - - 0,1%
( 111 RA I , , j
1. Xafc-dra nervny-kli bol-_--znf-,, inachaillnik - prof. A,G.Panov)
e rslk',c~y i j~-(Spital'D y 1, , rurg'.1, (na(:-,,,q, I Inih --
kaf,--dra voy nno-mr o, -r
prof. Ye.kl.Smjrno-,jr) Vccry-ennol-.rr,,,ed!tslnsl~qj ordena L~nina ala6&laii
im. Kirova, Leningrad. 'culnii 1, te dMay 20, -1965.
KEVORKIM A., prof.;! DAMIATIOV, G., dotsent; NIKOLOV, 1., In-Oh.) ATAINASOV, Iv.,
lfizh.,- ONESIDEDZOEVY M., inzh.; IETMV, Khr., inzh.; CIERVENDINEV,'At.,
Insh.; PANOV. Al., irzh.
lr',.roduction of the tax vatem in the textile ind"stry In Bulgaria.
Ptel. 'rekstilth prom 14 tio.1-16-21 165.
Chair of Toxtile TGOh-ftolbgy of the Machinory &nd Plec trots chnical
Inetitatoo Sofia,
, - I -
rn.c-
- 1, 1 , ~ - -~- - ~ ;
' - ad lip -
Pim-nov, AlcksF.Pdar. Wanthus glendii1ose. De-sf. (Beogr )1953 1
(Ailanthiis Flfmjulr.,sv, Dc~sf. Fiq-lisli t-ind Gcrmen sumf.,xics. Ill.-tis. ,
footnotcs, trbles)
SO: East European, LC~ Vol. 2, No. 12, Lee. 1953
FANOV,-A-M.$ Cand-of Phys-Hath-Soi (diss) "The Behavior of the Trajectories of
Difference Equation Systems in the Neighborhood of aSpecific Point," Sverdlovsk,
1959, 6 pp (Ministry of Higher and Secondary Special Education, USSR. Ural State
University im A. M. Gorlkiy) K, 7.60, 1o6)
ACC NR,AR6016601
S. i C6Dgt dR7004416.510W
AUTHOR: Panov,
TITLE: The behavior of trajectories of a differential equa-tion
syste in the vicinity of a fixed,point
SOURCE: Ref. zh. Mlatematika'.Abs. 12B210
REF SOURCE: (Tr.) Ural'skogo
-politekhn. in-ta ob. 139, 1964, 52-54
TOPIC TAGS: trajectory determination, differential equation system,
linear system, fixed point, Petrovskiy theorem
ABSTRACT: Refinement is given of a theorem by*1. G. Petrovskiy (Mathem-_1
sb., 1935, 41, vyp. 3), concerning the behavior of solutions for a
system close to linear in near the origin of coordinates* D.--*Grobman;!'
;_(Translation of
-abstract] [AM]
SUB CODE: 12/ SUBM DATE: 00
L Car 1/1 -ZC
10100 SR~ & H-
R M AM
NA
MVP ENS ONN9m,"', NO_
16(1) o5263
AUTHOR: Panov,A.M. SOV/140-59-5-19/25
TTTLE: -Behavior of the Solutions of a System of Difference
Equations in the Neighborhood of a Fixed Point
PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy. Matematika, 1959,
Ur 5, PP 174w183 (T inN
Mini
ABSTRACT: The author considers the system of difference equations
(1) Xm+1 - AXm + lp(Xm,m)
where A is a oonstant matrix. It is assumed that the coordinate
origin is an isolated fixed oint.
Theorem 1: Given the system M, where the roots of the
characteristic equation detIA-?LE! = o satisfy the inequations
JXiJ